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ABSOLUTE STEREOCHEMISTRIES AND CONFORMATIONS OF CLERODIN AND CARYOPTIN. 

WHY CONFLICTING RESULTS IN ABSOLUTE STEREOCHEMISTRY BASED ON CD AND ORD SPECTRA? 
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Summary: The reverse of absolute stereochemistries of clerodin and caryoptin means that the 
correct chirality conflict with the absolute stereochemistries based on Cotton effects. Mo- 
lecular mechanics and X-ray studies confirmed that the B ring of the 6-keto derivatives re- 
tained the boat form as the stable conformer. Furthermore, the steric factors causing the 
conformational changes were proved by derivation to the strain-free derivatives. The con- 
formation of the B ring in the derivatives changed to the chair form which is confirmed by 
the X-ray and CD. 

Based on chiroptical data' and X-ray study', the absolute stereochemistries of specific 

insect antifeedants, clerodin, caryoptin, and 3-epicaryoptin, should be expressed as formulas 

1, 2, and 2 which had earier been assigned the opposite chirality by Barton et a1.3 and the 
'L% 
authors4. The reversal of their chirality, however, means that the correct chirality con- 

flicts with the absolute stereochemistries which have been determined from Cotton effects 334 . 

Thus, the problem is why these compounds previouly exhibited unexpected Cotton effects. 

In the present study, we report that the conflict of the Cotton effects on 6-keto deriv- 

atives 4 and 5 is attributable to conformational changes. Their absolute stereochemistries 

had bee: dete;mined from the CD spectra with intense positive Cotton effects, $: A&3o1 5 

t3.51 and 2: ~~~~~ +3.10 
4 , and the ORD spectrum of 6-keto clerodin derivative3. 
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R’ 
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6 R1 R*=OH q,' 7' 

2 R'=02CC6H5Br-e 

R*=OH 

We attempted to clarify the conformations of t and : by energy minimization calculation5 

in studying the structure-activity relationships of L and its analog6. The results of the 

calculation were of interest in that the boat conformers of both compounds were more stable 

than the chair conformers on the B ring (Table 1). If they took the boat form on the B ring, 

the intense positive Cotton effects could not be concluded for them from the octant projec- 

tions7. And the boat conformers of $ and 2 seemed to have more steric interactions than the 
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Table 1. Steric energies 

boat conformers 

E 
chair Eboat 

4 71.2105 70.7709 
'L 
5 89.2744 88.4923 
% 
6 75.1541 74.4208 
% 

aE 
chair 

-E 
boat 

(E Kcal/mol) calculated for the chair and 

on the B ring. 

Aa E 
chair Eboat 

A 

0.4396 7 82.3930 80.7588 1.6342 

0.7821 ; 64.3601 67.0583 -2.6982 

0.7333 1; 68.9847 69.7139 -0.7292 

chair conformers from molecular models although clerodin and caryoptin themselves retained 

the chair conformation on the B ring 238 . Furthermore, minimized steric energies were also 

calculated for strainless 3,4-dihydroxy and 3-e-bromobenzoyl-6-keto derivatives ,Ej and z ( 

Table 1). Although the steric energies of both compounds decrease in comparison with that of 

5, the stable conformers leave the boat form on the B ring (Fig. 1. {a). Both compounds were 
'L 
experimentally derived from zg, and the CD spectra showed $: Ae300 +5.07 and <: Ae2gg +2.55. 

Further increase in intensities of the Cotton effects with positive sign may be attributed 

to the disappearance of the contribution of the 3,4-acetonide group to the minus front octant 

and to the retention of the boat conformation on the B ring. The X-ray study presented a 

definitive evidence of the conformation and the absolute stereochemistry of < (Fig. 1. 7b) 10 
?I 

Y 

Fig. 1 

7a 7b 
% 2, 

and proved the validity of prediction for the stable boat conformation of ,J$"< by molecular 

mechanics. Thus, it is concluded that the Cotton effects of the 6-keto derivatives were in 

conflict with the correct absolute stereochemistry of L and $ because of converting to the 

boat conformation of the B ring, which was entirely unexpected from the conformation of the 

C-6 acetyl derivatives 238 . 

The result may be accepted as a general concept by proof of factors causing the unusual 

conformational change. The steric factors were predicted by molecular mechanics and the 

derivation of strain-free compounds 5 and z was demonstrated. Steric forces responsible for 

the conformational changes were predicted from detailed studies of steric and VDW interaction 

energies for t%$ and the compounds replaced by hydrogen(s) of C-4, 5, 8, and 9 substituent 

group(s). It is striking that the compound t with a 4-a-methyl group assumed the chair con- 

formation on the B ring as the stable conformer (Table 1; Fig. 2. :a). Therefore, the 4-a- 

methyl derivative 2 was derived from $ stereospecifically 
ll 

, and the CD spectrum with posi- 

tive sign and low intensity showed A"3o1 +0.89. The marked decrease in the intensity over 
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Fig. 2 

bAc 

8, R=*..CH3 
'L 
2, R=dCH3 

that of 4 would be attributable to the ecu orientation of C-4 methyl group, and further cor- 

roborati;g evidence for the chair conformation was provided by the X-ray study of 8 (Fig. 2. 

Sb)". The X-ray analysis showed that the B ring of 8 was transformed into the ch:ir confor- 
z 
mation by deletion of the steric strain on the C-4 ax%substituent group. Thus, one of the - 

steric factors causing the conformational change on the B ring is 1,3-interactions due to 

participation by the C-4 ax substituent group for the carbonyl group and C-10 proton. - 

Furthermore, the steric energies suggested the participation of a C-5 carbinol group in 

the conformational change and, for a decarbinol derivative l,O, showed the chair conformation 

on the B ring as a stable conformer (Table 1). This prediction was actually proved by deri- 

vation of 12 from 2 
13 . The derivative l,O with trans juncture 

13,14 

with positive sign: Ac303 

showed the CD spectrum 

+2.20. The determination of its conformation based on the Cotton 

effect is logically deduced from the fact that, although the C-5 carbinol group of 2 contrib- 

utes much to negative amplitude at the third quardrant in any conformation, the Cotton effect 

of l,O has a lower intensity than that of 5. 

the B ring of ',o could only be the chair Term 

Thus, it is concluded that the conformation on 

(Fig. 3) and the other steric factor causing 

the conformational change is the C-5 carbinol group. 
Y 

There have been many arguments against the absolute stereochemistries of neo-clerodane 
3,4,15 

diterpenes . Complications may arise from the fact that the conformational changes in 

many cases depended on the delicate balance among bisectional steric interactions above and 

below the decalone ring. 
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